

[image: Build] [https://github.com/monocongo/climate_indices/actions] [image: Coverage] [https://coveralls.io/github/monocongo/climate_indices?branch=master] [image: Quality] [https://www.codacy.com/app/monocongo/climate_indices?utm_source=github.com&utm_medium=referral&utm_content=monocongo/climate_indices&utm_campaign=Badge_Grade] [image: License] [https://opensource.org/licenses/BSD-3-Clause] [image: Python]

Climate Indices in Python

This project contains Python implementations of various climate index algorithms which provide
a geographical and temporal picture of the severity of precipitation and temperature anomalies
useful for climate monitoring and research.

The following indices are provided:

	SPI [https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-index-spi],
Standardized Precipitation Index, utilizing both gamma and Pearson Type III distributions

	SPEI [https://www.researchgate.net/publication/252361460_The_Standardized_Precipitation-Evapotranspiration_Index_SPEI_a_multiscalar_drought_index],
Standardized Precipitation Evapotranspiration Index, utilizing both gamma and Pearson Type III distributions

	PET [https://www.ncdc.noaa.gov/monitoring-references/dyk/potential-evapotranspiration],
Potential Evapotranspiration, utilizing either Thornthwaite [http://dx.doi.org/10.2307/21073]
or Hargreaves [http://dx.doi.org/10.13031/2013.26773] equations

	PNP [http://www.droughtmanagement.info/percent-of-normal-precipitation/],
Percentage of Normal Precipitation

The following are provided as experimental/development versions only, not fully vetted nor suitable for research purposes:

	PDSI [http://www.droughtmanagement.info/palmer-drought-severity-index-pdsi/],
Palmer Drought Severity Index

	scPDSI [http://www.droughtmanagement.info/self-calibrated-palmer-drought-severity-index-sc-pdsi/],
Self-calibrated Palmer Drought Severity Index

	PHDI [http://www.droughtmanagement.info/palmer-hydrological-drought-index-phdi/],
Palmer Hydrological Drought Index

	Z-Index [http://www.droughtmanagement.info/palmer-z-index/],
Palmer moisture anomaly index (Z-index)

	PMDI [https://climate.ncsu.edu/climate/climdiv], Palmer Modified Drought Index

This Python implementation of the above climate index algorithms is being developed
with the following goals in mind:

	to provide an open source software package to compute a suite of
climate indices commonly used for climate monitoring, with well
documented code that is faithful to the relevant literature and
which produces scientifically verifiable results

	to provide a central, open location for participation and collaboration
for researchers, developers, and users of climate indices

	to facilitate standardization and consensus on best-of-breed
climate index algorithms and corresponding compliant implementations in Python

	to provide transparency into the operational code used for climate
monitoring activities at NCEI/NOAA, and consequent reproducibility
of published datasets computed from this package

	to incorporate modern software engineering principles and scientific programming
best practices

Getting started

The installation and configuration described below is
performed using a bash shell, either on Linux, Windows, or MacOS.

Windows users will need to install and configure a bash shell in order
to follow the usage shown below. We recommended either
babun [https://babun.github.io/] or Cygwin [https://www.cygwin.com/]
for this purpose.

Configure the Python environment

This project’s code is written in Python 3. It is recommended to use
either the Miniconda3 [https://conda.io/miniconda.html] (minimal Anaconda) or
Anaconda3 [https://www.continuum.io/downloads] distribution. The below instructions
will be Anaconda specific (although relevant to any Python virtual environment [https://virtualenv.pypa.io/en/stable/]
), and assume the use of a bash shell.

A new Anaconda environment [https://conda.io/docs/using/envs.html] can be created
using the conda [https://conda.io/docs/] environment management system that comes
packaged with Anaconda. In the following examples, we’ll use an environment named indices_env
(any environment name can be used instead of indices_env) which will be created and
populated with all required dependencies through the use of the provided setup.py file.

First, create the Python environment:

$ conda create -n indices_env

The environment can now be ‘activated’:

$ source activate indices_env

Once the environment has been activated then subsequent Python commands will run
in this environment where the package dependencies for this project are present.

Now the package can be added to the environment along with all required modules
(dependencies) via pip [https://pip.pypa.io/en/stable/]:

$ python -m pip install climate-indices

For development of the package itself it pays to install the dependencies via
the requirements.txt file:

$ python -m pip install -r requirements.txt

When adding dependencies to the package they should be added to the pyproject.toml
file in the dependencies section, then we can rebuild the requirements.txt file using pip-tools:

$ python -m piptools compile -o requirements.txt pyproject.toml

NCO

NetCDF Operators is a requirement and must be installed for utilization of this package.
Instructions for installation on various platforms is available here [http://nco.sourceforge.net#Executables//].
If using an Anaconda environment as advised above then it’s as simple as running
the following command within the activated conda environment:

$ conda install -c conda-forge nco

Indices Processing

The installation will provide an “entry point” script which interacts with the core
computational package to compute one or more climate indices. This script is
process_climate_indices and is used to compute indices corresponding to gridded
NetCDF datasets as well as US climate division NetCDF datasets.

This Python entry point script is written to be run via bash shell command, i.e.

$ process_climate_indices <options>

The options for the entry point script are described below:

	Option

	Description

	index

	Which of the climate indices to compute.
Valid values are ‘spi’, ‘spei’, ‘pnp’, ‘scaled’,
‘pet’, and ‘palmers’. ‘scaled’ indicates all
three scaled indices (SPI, SPEI, and PNP) and
‘palmers’ indicates all Palmer indices (PDSI,
PHDI, PMDI, SCPDSI, and Z-Index).

	periodicity

	The periodicity of the input dataset files.
Valid values are ‘monthly’ and ‘daily’.

NOTE: Only SPI and PNP support daily inputs.

	netcdf_precip

	Input NetCDF file containing a
precipitation dataset, required for all
indices except for PET. Requires the use of
var_name_precip in conjunction so as to
identify the NetCDF’s precipitation variable.

	var_name_precip

	Name of the precipitation variable within
the input precipitation NetCDF.

	netcdf_temp

	Input NetCDF file containing a
temperature dataset, required for PET.
If specified in conjunction with an index
specification of SPEI or Palmers then PET
will be computed and written as a side
effect, since these indices require PET.
This option is mutually exclusive with
netcdf_pet/var_name_pet, as either
temperature or PET is required as an input
(but not both) when computing SPEI and/or
Palmers. Requires the use of
var_name_temp in conjunction so as to
identify the NetCDF’s temperature variable.

	var_name_temp

	Name of the temperature variable within the
input temperature NetCDF.

	netcdf_pet

	Input NetCDF file containing a PET dataset,
required for SPEI and Palmers.
This option is mutually exclusive with
netcdf_temp/var_name_temp, as either
temperature or PET is required as an input
(but not both) when computing SPEI and/or
Palmers. Requires the use of
var_name_pet in conjunction so as to
identify the NetCDF’s PET variable.

	var_name_pet

	Name of the PET variable within the input PET
NetCDF.

	netcdf_awc

	Input NetCDF file containing available water
capacity, required for Palmers. Requires the
use of var_name_awc in conjunction so as to
identify the NetCDF’s AWC variable.

	awc_var_name

	Name of the available water capacity variable
within the input AWC NetCDF.

	output_file_base

	Base file name for all output files.

Each computed index will have a corresponding
output file whose name will begin with
this base name plus the index’s
abbreviation plus a month scale
(if applicable), connected with underscores,
plus the ‘.nc’ extension. For example
for SPI at 3-month scale
the resulting output files will be
named <output_file_base>_spi_gamma_03.nc
and <output_file_base>_spi_pearson_03.nc.

	scales

	Time step scales over which the PNP, SPI, and
SPEI values are to be computed. Required when
the index argument is ‘spi’, ‘spei’,
‘pnp’, or ‘scaled’. The periodicity
option will infer whether the scales used are
month or day scales.

NOTE: When used for US climate divisions
processing this option specifies month scales

	calibration_start_year

	Initial year of the calibration period.

	calibration_end_year

	Final year of the calibration period
(inclusive).

	multiprocessing

	Valid values are ‘all’ (uses all available
CPUs), ‘single’ (uses a single CPU), or
‘all_but_one’ (uses all CPUs minus one).
Default value is ‘all_but_one’.

	save_params

	Save distribution fitting variables to this file
path. The fittings NetCDF is to be used as input
when using the load_params option. [NOTE:
only for use with the spi entrypoint for SPI.]

	load_params

	Load distribution fitting variables from this
filepath. The fittings NetCDF file is one that
was created by the save_params option. [NOTE:
only for use with the spi entrypoint for SPI.]

Example Input and Output Datasets

Example NetCDF datasets that are valid input to the indices processing scripts
described above are available from the associated project
example_climate_indices [https://github.com/monocongo/example_climate_indices/].
The input NetCDF files used in the examples below (nclimdiv.nc,
nclimgrid_lowres_prcp.nc, etc.) can be fetched from this repository, as well
as associated output NetCDF datasets that can be used to validate result of the
below examples.

Example Command Line Invocations

US Climate Divisions (all indices)

$ process_climate_indices --index all --periodicity monthly --scales 3 6
--netcdf_precip /data/nclimdiv.nc
--netcdf_temp /data/nclimdiv.nc
--netcdf_awc /data/nclimdiv.nc
--output_file_base /data/nclimdiv
--var_name_precip prcp --var_name_temp tavg --var_name_awc awc
--calibration_start_year 1951 --calibration_end_year 2010

The above command will compute all indices from an input NetCDF dataset containing
precipitation, temperature, and available water capacity variables (in this case,
the US Climate Divisions NetCDF dataset provided in the example inputs directory).
The input dataset is monthly data and the calibration period used will be
Jan. 1951 through Dec. 2010. The indices will be computed at 3-month and 6-month scales.
Upon completion the individual NetCDF files will contain variables for all computed indices:
/data/nclimdiv_pet.nc, /data/nclimdiv_pnp_03.nc, /data/nclimdiv_pnp_06.nc,
/data/nclimdiv_spi_gamma_03.nc, /data/nclimdiv_spi_gamma_06.nc,
/data/nclimdiv_spi_pearson_03.nc, /data/nclimdiv_spi_pearson_06.nc,
/data/nclimdiv_spei_gamma_03.nc, /data/nclimdiv_spei_gamma_06.nc,
/data/nclimdiv_spei_pearson_03.nc, /data/nclimdiv_spei_pearson_06.nc,
/data/nclimdiv_pdsi.nc, /data/nclimdiv_phdi.nc, /data/nclimdiv_pmdi.nc,
/data/nclimdiv_scpdsi.nc, and /data/nclimdiv_zindex.nc.
Parallelization will occur utilizing all but one of the available CPUs
(default since the –multiprocessing option is omitted).

PET monthly

$ process_climate_indices --index pet --periodicity monthly --netcdf_temp
/data/nclimgrid_lowres_tavg.nc --var_name_temp tavg --output_file_base
<out_dir>/nclimgrid_lowres --multiprocessing all_but_one

The above command will compute PET (potential evapotranspiration) using the
Thornthwaite method from an input temperature dataset (in this case, the reduced
resolution nClimGrid temperature dataset provided in the example inputs directory).
The input dataset is monthly data and the calibration period used will be Jan. 1951
through Dec. 2010. The output file will be <out_dir>/nclimgrid_lowres_pet.nc.
Parallelization will occur utilizing all but one of the available CPUs.

SPI daily

$ process_climate_indices --index spi --periodicity daily --netcdf_precip
/data/cmorph_lowres_daily_conus_prcp.nc --var_name_precip
prcp --output_file_base <out_dir>/cmorph_lowres_daily_conus --scales 30 90
--calibration_start_year 1998 --calibration_end_year 2016
--multiprocessing all

The above command will compute SPI (standardized precipitation index, both gamma
and Pearson Type III distributions) from an input precipitation dataset (in this case,
the reduced resolution CMORPH precipitation dataset provided in the example inputs
directory). The input dataset is daily data and the calibration period used will be
Jan. 1st, 1998 through Dec. 31st, 2016. The index will be computed at 30-day and
90-day timescales. The output files will be <out_dir>/cmorph_lowres_daily_conus_spi_gamma_30.nc,
<out_dir>/cmorph_lowres_daily_conus_spi_gamma_90.nc,
<out_dir>/cmorph_lowres_daily_conus_spi_pearson_30.nc, and
<out_dir>/cmorph_lowres_daily_conus_spi_pearson_90.nc. Parallelization will occur utilizing
all CPUs.

SPI monthly

$ process_climate_indices --index spi --periodicity monthly --netcdf_precip
/data/nclimgrid_lowres_prcp.nc --var_name_precip prcp
--output_file_base <out_dir>/nclimgrid_lowres --scales 6 12
--calibration_start_year 1951 --calibration_end_year 2010
--multiprocessing all

The above command will compute SPI (standardized precipitation index, both gamma and
Pearson Type III distributions) from an input precipitation dataset (in this case,
the reduced resolution nClimGrid precipitation dataset provided in the example inputs directory).
The input dataset is monthly data and the calibration period used will be
Jan. 1951 through Dec. 2010. The index will be computed at 6-month and 12-month timescales.
The output files will be <out_dir>/nclimgrid_lowres_spi_gamma_06.nc,
<out_dir>/nclimgrid_lowres_spi_gamma_12.nc, <out_dir>/nclimgrid_lowres_spi_pearson_06.nc,
and <out_dir>/nclimgrid_lowres_spi_pearson_12.nc. Parallelization will occur utilizing
all CPUs.

SPEI monthly

$ process_climate_indices --index spei --periodicity monthly --netcdf_precip
/data/nclimgrid_lowres_prcp.nc --var_name_precip prcp --netcdf_pet
/data/nclimgrid_lowres_pet.nc --var_name_pet pet --output_file_base
<out_dir>/nclimgrid_lowres --scales 9 18 --calibration_start_year 1951
--calibration_end_year 2010 --multiprocessing all

The above command will compute SPEI (standardized precipitation evapotranspiration index,
both gamma and Pearson Type III distributions) from input precipitation and potential evapotranspiration datasets
(in this case, the reduced resolution nClimGrid precipitation and PET datasets provided in the example inputs directory).
The input datasets are monthly data and the calibration period used will be Jan. 1951 through Dec. 2010. The index
datasets will be computed at 9-month and 18-month timescales. The output files will be
<out_dir>/nclimgrid_lowres_spei_gamma_09.nc, <out_dir>/nclimgrid_lowres_spei_gamma_18.nc,
<out_dir>/nclimgrid_lowres_spei_pearson_09.nc, and <out_dir>/nclimgrid_lowres_spei_pearson_18.nc.
Parallelization will occur utilizing all CPUs.

Palmers monthly

$ process_climate_indices --index palmers --periodicity monthly --netcdf_precip
/data/nclimgrid_lowres_prcp.nc --var_name_precip prcp --netcdf_pet
/data/nclimgrid_lowres_pet.nc --var_name_pet pet --netcdf_awc
/data/nclimgrid_lowres_soil.nc --var_name_awc awc --output_file_base
<out_dir>/nclimgrid_lowres --calibration_start_year 1951 --calibration_end_year 2010
--multiprocessing all

The above command will compute the Palmer drought indices: PDSI (original Palmer Drought Severity Index),
PHDI (Palmer Hydrological Drought Index), PMDI (Palmer Modified Drought Index), Z-Index (Palmer Z-Index),
and SCPDSI (Self-calibrated Palmer Drought Severity Index) from input precipitation, potential
evapotranspiration, and available water capacity datasets (in this case, the reduced resolution nClimGrid
precipitation, PET, and AWC datasets provided in the example inputs directory). The input datasets are monthly
data and the calibration period used will be Jan. 1951 through Dec. 2010. The output files will be
<out_dir>/nclimgrid_lowres_pdsi.nc, <out_dir>/nclimgrid_lowres_phdi.nc,
<out_dir>/nclimgrid_lowres_pmdi.nc, <out_dir>/nclimgrid_lowres_scpdsi.nc, and <out_dir>/nclimgrid_lowres_zindex.nc.
Parallelization will occur utilizing all CPUs.

Pre-compute SPI distribution fitting variables

In order to pre-compute fititng parameters for later use as inputs to subsequent
SPI calculations we can save both gamma and Pearson distributinon fitting parameters
to NetCDF, and later use this file as input for SPI calculations over the same
calibration period.

$ spi --periodicity monthly --scales 1 2 3 6 9 12 24 36 48 60 72
--calibration_start_year 1998 --calibration_end_year 2016
--netcdf_precip /data/nclimgrid/nclimgrid_prcp.nc --var_name_precip prcp
--output_file_base /data/nclimgrid/nclimgrid --multiprocessing all
--save_params /data/nclimgrid/nclimgrid_fitting.nc --overwrite

$ spi --periodicity monthly --scales 1 2 3 6 9 12 24 36 48 60 72
--calibration_start_year 1998 --calibration_end_year 2016
--netcdf_precip /data/nclimgrid/nclimgrid_prcp.nc --var_name_precip prcp
--output_file_base /data/nclimgrid/nclimgrid --multiprocessing all
--load_params /data/nclimgrid/nclimgrid_fitting.nc

In the above example we demonstrate how distribution fitting parameters can be saved as NetCDF.
This fittings NetCDF can then be used as pre-computed variables in subsequent SPI computations.
Inital command computes both distribution fitting values and SPI for various month scales.
The distribution fitting variables are written to the file specified by the –save_params option.
The second command also computes SPI but instead of computing the distribution fitting values
it loads the pre-computed fitting values from the NetCDF file specified by the –load_params
option.

For Developers

Download the code

Clone this repository:

$ git clone https://github.com/monocongo/climate_indices.git

Move into the source directory:

$ cd climate_indices

Within this directory, there are four subdirectories:

	climate_indices: main computational package

	tests: unit tests for the main package

	notebooks: Jupyter Notebooks describing the internals of the computational modules

	docs: documentation files

Testing

Initially, all tests should be run for validation:

$ tox

If you run the above from the main branch and get an error then please
send a report and/or add an issue, as all tests should pass.

Get involved

Please use, make suggestions, and contribute to this code. Without
diverse participation and community adoption this project will not reach
its potential.

Are you aware of other indices that would be a good addition here? Can
you identify bottlenecks and help optimize performance? Can you suggest new
ways of comparing these implementations against others (or other
criteria) in order to determine best-of-breed? Please fork the code and
have at it, and/or contact us to see if we can help.

	Read our contributing
guidelines [https://github.com/monocongo/climate_indices/blob/master/CONTRIBUTING.md]

	File an
issue [https://github.com/monocongo/climate_indices/issues], or
submit a pull request [https://github.com/monocongo/climate_indices/pulls]

	Send us an email

Copyright and licensing

This is a developmental version of code that is originally developed at
NCEI/NOAA, official release version available on
drought.gov [https://www.drought.gov/drought/python-climate-indices].
This software is under BSD 3-Clause license, copyright James Adams, 2017.
Please read more on our license page.

Citation

You can cite climate_indices in your projects and research papers via the BibTeX
entry below.

@misc {climate_indices,
 author = "James Adams",
 title = "climate_indices, an open source Python library providing reference implementations of commonly used climate indices",
 url = "https://github.com/monocongo/climate_indices",
 month = "may",
 year = "2017--"
}

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Climate Indices in Python

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

